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Session-based search is the concept of harnessing the query history of a
single search session to improve precision and recall of subsequent queries
by making assumptions about the context of the current query. Collabora-
tive search describes the participation of multiple users in the same search
session in real-time, where results can be shared and the actions of one user
may influence the ranking of the search results of another participant. The
combination of these properties leads to a search engine that should be well
suited for complex exploratory search tasks that can be solved efficiently by
a small group of people in a combined effort.

This work lays the foundation for an upcoming master’s thesis in which the
concept of a session-based collaborative search engine will be investigated.
A working prototype has been built as part of this work that implements

session-based search on a collection of scientific papers.
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1 Introduction

In the early years of the internet, search engines did not distinguish between their users:
the same query generated the same search results for everyone, independent of any
contextual information. This approach turned out to be somewhat limited in providing
relevant results, as relevance often depends on contextual information about the user,
like location, language or preferences, and so the idea of a personalized search engine [3]
became a reality. In the following years, the amount of information that search engines
could collect through tracking networks became so extensive and the processing cost
became low enough that some engines began to generate search results tailored to the

preferences of individual users based on their entire online footprint.

Despite this progress, the way we interact with a search engine has hardly changed over
time: you submit a query, review the results and refine your query until the results are
satisfying or nothing new comes up. While search results may be different for each user,
the response to a search query remains the same for a single user, no matter what the
context of that query might have been. If you've been researching snakes for the past
hour and then enter “python” in a web search engine, it is likely that the search results
will be about the programming language rather than the species of snake — the context
of your recent query history has been completely ignored. In this example, the issue can
easily be mitigated by adding “snake” as a second search term to clarify the intent, but
this may be harder for complex research tasks where the user may not necessarily be

aware of the relevant terminology.

The goal of session-based search is to support users in exploratory search tasks by identi-
fying the common topic of the most recent queries and serving search results that match
the current topic rather than the exact query terms. Instead of letting the user refine
the query so that the search engine gets all the context it needs, we save the context in
the search session and interpret subsequent queries under that prior. This way, a user
does not only get more relevant results, it also allows the search engine to guide the user

by suggesting topics that are relevant in the current context.

In this work we will investigate the foundations of a session-based collaborative search
engine. In order to recognize the hidden topics in a search session, a topic model based on
the underlying document collection is required. How a suitable topic model can be built
and labeled will be discussed in Section 3. An introduction to session-based search will
be given in Section 4, where we will investigate the structure of a search session, methods

for the aggregation of the query history and the identification of relevant topics in the



current search context. As part of this work, the prototype of a session-based search
engine has been built, which will be presented in Section 5. The subject of collaborative
search will only briefly be discussed in the next chapter, a detailed examination must be
deferred to future work. Section 6 lays out what else can be expected from an upcoming

thesis.

2 Related Work

Topic Models are statistical models that help discovering the hidden topics in a docu-
ment collection. Early work has been done by Deerwester et al. [22] and Hofmann [23].
The more recent works of Blei et al. [24, 25] will be discussed in Section 3. Fewer
attention has been given so far to the related issue of automatic topic labelling, with

occasional publications [29, 30, 31, 32, 33] since the appearance of this subject in 2007.

Session-Based Search as a concept has been discussed since at least 2003 [1], with first
mention of the term “session-based search” in 2004 [2]. The definition of session-based
search in this context is strictly limited to the idea of adjusting search results based on
the last few queries of a user and not to be confused with the more general concept of
a search session, which just describes the fact that users often submit related queries
to a search engine in order to satisfy a search interest. It should also be distinguished
from personalized search [3], which aims to learn a user’s preferences over time and serve

search results based on these preferences and other metadata.

Early work has been done by Shen and Zhai [I, 2], who mention the use of the query
history to improve the ranking of search results. The topic has gained more attention
since 2010, when the first session track [1] was held at the Text REtrieval Conference
(TREC), though in some publications different nomenclature has been used, like session
search [12] or dynamic search [5]. Notable research has been done by Yang et al. who
model the search session as a Markov Decision Process [0, 7, 11, 12] with the user and
the search engines as agents. Furthermore, query aggregation and the optimal weights
of query terms in the context of a search session [3, 9, 10] have been investigated and an
implementation was provided under the name Dumpling [5]. The works of Jiang et al.

provided insights into user interaction and satisfaction with session-based search [13, 14].

Collaborative Search as defined in this work describes the participation of multiple

users in the same search session at the same time. The idea to encourage collaboration



between users of a search engine is not new [16, 17], although the ways in which collab-
oration was achieved can be very different. One of the earliest works is the Community
Search Assistant [15], which is a search engine that suggests related queries of other
users while you are searching. Another example is SearchTogether [18], which supports

groups of users in a search scenario by sharing queries and providing a chat application.

Morris [19] has shown that despite the fact that collaborative search tools do not have
any notable market share, people are already searching collaboratively on a regular
basis with the help of communication tools like chat applications or social media. These
findings suggest a high demand for the right collaborative search tools, but so far there
is no consensus about the best methods. Coagmento [20] is a collaborative information
seeking framework that aims to support the search effort of small groups by providing
a common dashboard where hyperlinks, text snippets and media files can be shared
and reviewed. Querium [21] is another search engine that allows collaborators to rate
search results and run similarity searches on individual results. However, none of these
approaches incorporate a common search context that directly influences the search

results of each collaborator, which is one of the methods proposed in this work.

3 Probabilistic Topic Models

An important prerequisite for efficient exploratory search is to have knowledge about
the topics of a document collection, which are not inherently visible through keyword
matching. The goal is to not only serve documents whose content matches a query string,
but to better understand the search interest of the user and to find documents that are
most relevant to that search interest. This however requires a consistent annotation
of documents based on their contents, which is a huge effort when done manually by
humans. However, with probabilistic topic models [25] it is possible to discover the
abstract topics that occur in each document of a collection in an unsupervised learning

process.

3.1 Topic Modeling

Topic modeling is the process of uncovering the thematic structure hidden inside a
document collection. As a result, documents (or parts of them) are annotated with

a set of topics. Each topic can be represented as a probability distribution over a



fixed vocabulary, therefore we can recognize a topic by matching an expected frequency

distribution of key terms against the contents of a document.

A popular method to create such topic models is latent Dirichlet allocation (LDA),
“a generative probabilistic model for collections of discrete data such as text corpora” [24].
LDA was influenced by probabilistic latent semantic indexing (pLSI) [23], which in turn
is an enhancement of latent semantic analysis (LSA) [22]. The common underlying as-
sumption of these models is that documents are the result of a generative process that
has it’s root in the specification of a set of topics. Therefore, the computational task can
be seen as the reversal of this process, the inference of the hidden topics from a collection
of observed documents. A detailed description of LDA is beyond the scope of this work,
especially since a good introduction has been written by one of it’s originators, David
Blei [25].

Since it’s introduction in 2003, the LDA model has been extended in various ways to
mitigate some of it’s shortcomings. An example is the nested Chinese restaurant pro-
cess (nCRP), “a stochastic process which assigns probability distributions to infinitely-
deep, infinitely-branching trees” [28]. This does not only solve the problem of having to
define a fixed number of topics ahead of time, as otherwise required by LDA, but also
creates a linked topic hierarchy instead of a set without any relations. The author-topic
model [27] is another extension that concerns the inclusion of authorship information,
which can be particularly useful for academic publications. The idea is that topics are
distributed over authors instead of documents, therefore the topics of each document

are modeled as the average of the contributing author’s topics.

Due to the recent popularity of topic modeling in general and LDA in particular, there are
plenty of implementations to choose from. In this work, the Python library Gensim [20]

will be used, which provides a scalable implementation of LDA and some related models.

3.2 Topic Labeling

While LDA topic models can be very useful in identifying relations between documents
based on the similarity of an underlying topic, they do not provide us with any means
to actually define or name individual topics. Having a name for a topic can help in
acquiring additional knowledge about that topic from other sources, which in turn can
be used to improve search results. Furthermore it enables us to make judgments about
the accuracy and quality of the topic model and helps humans, starting from a loose

set of topics, to build an ontology that represents the relationships between entities of a



domain. A search engine can additionally benefit from such an ontology in that it can
adequately visualize important topics to the user who can navigate through topics and

filter results.

Each topic in an LDA model is represented by a vector that assigns a probability to
each term that defines the topic. These marginal probabilities [24] can be used to find
the most significant terms that identify a topic and it is possible, with some background
knowledge, to derive a name for the underlying concept from these terms. This however
requires manual review by humans with knowledge about the domain of interest, which

is a time-consuming task.

To mitigate this issue, research has been done in recent years on the issue of automatic
topic labeling. The general approaches are to use the terms with the highest marginal
probabilities for each topic to either derive labels from relevant terms and documents
of that topic [29, 33] or to use external knowledge sources to map the discovered topic
to a known concept [30, 31, 32]. The knowledge-free approach is very flexible and able
to derive labels even for new topics that just came up in news articles or social media.
The knowledge-backed approach on the other hand allows us to link topics with other
knowledge sources, which helps us to map a topic model to existing ontologies and to
gain further knowledge of that topic. Therefore, topic labeling based on the methods

described by [31, 32] seems to be the more promising solution for this work.

Still, the research so far has shown that fully automated topic labeling is not yet feasible.
Hence the generated labels should additionally be screened by human reviewers, which
is still a non-trivial task, but should be manageable for a customary amount of topics

in the low triple-digit range.

4 Session-Based Search

A search session describes all interactions of a user with a search engine that are required
to fulfill a single information need. This may be a simple question that can be answered
with a single query (e.g. getting a weather forecast), or a complex task that requires
careful review of the search results and a constant refinement of the search query (e.g.

planning a holiday).

Contemporary web search engines improve their search results quite successfully by
analyzing large query logs and identifying past search sessions with the goal to predict

the most likely information need from an otherwise vague or ambiguous query. The



result of this analysis can be used to suggest terms while users are typing in their query
or to expand the submitted user query to include more terms that the user likely would
have chosen in the next query anyway. A dependable approach to identify and harness
search sessions identified in query logs is the query-flow graph [35]. While large query
logs can be a valuable resource for a search engine, there are often no query logs of
sufficient size available for many search applications, usually due to a relatively small

number of users or the high complexity and/or diversity of topics.

Session-based search, as defined in this work, aims to support the user in his search task
without the need to have any knowledge about previous search sessions by other users.
Instead, the best results will be calculated from just the data that is available in the

current session.

4.1 Session Data

A search session S consists of one or more steps. FEach step begins with the submission of
a new query by the user and ends with the next query. A step in a session S is identified

by it’s index position in the list of steps s1, ..., s,. A single step is defined as

si = (g, wi, di, Si—1)

where ¢ is the query submitted by the user, u defines the user’s actions during that step,
d is the derived data that was generated by the search engine for that step and s;_1 is
the step before the current step (or none, if i — 1 = 0). Similar definitions have already
been suggested by Yang et al. [7, 12]. The definition used in this work was intentionally
held abstract to give implementations of this concept the necessary freedom to choose
which data of a session they want to harness. This is the definition of ¢, v and d in this

work:

e query ¢ = (qf,, .., qf,), where each element of the tuple is a query string that is
associated with a search function f;. This will usually contain a full-text search
function, but may also include more specific filters like the date of publication
(before or after) or the name of the author of a publication. The selection of filters

depends on the type of data that should be supported.

e user actions u = (¢, ¢), where ¢ is the time stamp of the initial query submission
and c is the list of clicked results, along with a time stamp for each click. This

information can contribute to the ranking of future search results, because we can



assume that a user is interested in a link that was clicked, except if the time to

the next activity (new query or another click) was very short.

e derived data d = (e, r, m), where e is the expanded search query, r is the list of
search results and m is the list of the currently best matching elements in the topic

model along with their scores.

While ¢ and u consist of user input that cannot be later restored, d can be derived at
any later point in time, given a session .S where at each step d; has not been saved.
Still, it can be useful to store d for various reasons: In session-based search, the state
of a session is highly dependent on the state of all previous steps. Recalculating the
entire query history during each step would slow down the search engine, while storing
the state would only cost a justifiable amount of memory. A useful side-effect of this
would be the possibility of efficient navigation in query history: the user could return
to a previous step of the search session, review more results and move from there in a

different direction.

4.2 Query Aggregation

An important feature of session-based search is the inclusion of terms from past queries
into the calculation of the search result for the current query. A simple approach to
achieve this is to join all past and the current query using the OR operator, but this
may reduce the correlation of the search results with the most recent search query, which
may be unexpected and even frustrating for the user. Therefore, it is advisable to give

more weight to the most recent query compared to the previous ones.

This can be achieved by calculating the search results r for each query g in the current
session individually. To form a unified list of search results r’, the results of each search
query r1, ..., T, are joined in a single list and ordered by the score of each search result.
Before the results are joined, the scores of each result list are multiplied by a weighting
factor w;, whose value depends on the position of the query in the query history. By
selecting a larger w for more recent queries, the results matching these queries are

preferred over the results of previous queries.

Guan and Yang [9] have investigated the optimal weight for each query depending on
the distance of the query to the most recent one. Based on data from TREC 2010-2012
they evaluated the relative relevance of the search results in a session for all past queries

in the session compared to the most recent one. Their findings show that relevance



generally decreases with increasing distance to the latest query, with the exception of

the very first query, which always remains about as relevant as the second to last query.

These experimental findings can be roughly approximated by an exponential function
with a base A within about [0.7 ... 0.9] and the exponent set to to n — i for ¢; (with an

exception for the first query):

A for > 1

Weight (¢;) =
AL for i=1

The implementation of this aggregation method has shown a decent balance for a value
of A = 0.8 (see Section 5.2).

4.3 Topic ldentification

In this section we introduce topic identification, a method to decide, based on the most
recent search results and other session data, which topics are most relevant to the user’s
search interest in general and the last query in particular, as well as to find a reasonable
balance between these poles. This task is not related to topic detection [36], which is
mainly concerned with text segmentation by recognizing known topics and identifying
previously unknown topics, e.g. for news aggregation. Because topic identification has
— to the best of the author’s knowledge — not been discussed in previous publications,
a novel approach to solve this issue will be presented. Experiences gained during the
investigation of this topic will be described, but a scientific evaluation of these findings

must be deferred to future work.

4.3.1 Topic Aggregation

As a result of the work in chapter 3 we can already rely on a set of documents which
have been linked to one or more concepts in a topic model. The next step is now to

calculate a list of the dominant topics for a single search query.

A list of search results r consists of documents dy, ..., d,, where each document has
one or more topics t;1, ..., ti, assigned, where ¢ is the index of the document d; in r. A
simple solution would be to count the number of occurrences of each distinct topic t in
the first 10 documents and sort them in descending order (topics with the same number

of occurrences are ordered by the highest score of the documents they occurred in). This
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would provide us with an ordered list where the most frequent topics occur first, but

there is a number of issues this solution does not account for:

1. raw topic count: a relevant topic that occurs in only few search results can be

overruled by a topic that is more frequent but actually less relevant.

2. distribution of topics: popular topics that occur frequently in the document collec-

tion will generally overrule less frequent topics, notwithstanding their relevance.

3. relations between topics: closely related topics are counted as distinct entities,
therefore a less relevant subject that is represented in the model as a single topic

may overrule a more relevant subject that is represented by multiple topics.
Let’s try to address these problems one by one.

The issue raw topic count can be mitigated by combining a set of different aggregation
methods. Tj,;ep, defines a list of topics ordered by the highest score of all documents they
occur in. This will get us the topics of the most relevant documents, no matter how
often they occur. A reasonable balance between score and frequency can be achieved
by ordering the list of topics by the sum of the scores of all documents that the same
topic occurs in (Tgym). And also the already mentioned raw frequency of topics in the
result list can be a useful aggregation that adds a simple majority vote to the mixture
(Tiount). The combination of these aggregations is non-trivial, because the calculated
scores are not comparable between different aggregations. Experience gained during this
work indicates (non-representative) that a weighted average of the aggregations, after

being scaled to the same value range, gives decent results.

Thi gh Tsum Tcount

Tog = wy - ——290 4 gy - Ty ot
avg max (Thigh) max (Tsum,) max (Teount)

A weighted average is proposed, because certain aggregations seem to provide more
relevant results than others. Experience suggests that Tj;e, is usually more relevant

than Ty and Teount seems to be the least relevant of the three aggregations.

The second issue concerns the distribution of topics among all documents, which is likely
to be non-uniform. To avoid the dominance of frequent topics over less frequent ones in
a scenario where two topics should be equally important, it is proposed to add a factor
to each topic based on the proportion of the topic’s frequency in the result list compared
to it’s frequency in the entire document collection. The calculation of that factor is
similar to tf-idf [34], where instead of the term frequency we count the topic frequency

in the result list . The inverse document frequency is defined as the logarithmically
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scaled inverse fraction of the documents in the document collection D that are linked to

a topic t. The resulting score is calculated as

tf(t,r) = |der:ted|
idf (£, D) = log gepreq
thdf (¢,r, D) = tf(¢,r)-idf (¢, D)

tf(t,r) defines the number of occurrences of ¢ in a document d from the result list r,
idf (¢, D) is calculated from the size of the document collection |D| divided by the number
of occurrences of the topic t in these documents and tfidf (¢, r, D) is the product of the

latter two.

Issue number three concerns relations between topics. It exists due to the non-uniform
precision with which topics are assigned to documents (both by humans and machines),
but also a possible imbalance when it comes to the granularity of the topic model itself.
The proposed solution to this issue is to discover a common broader topic for related
topics which is then temporarily added to all documents in the result list that contain one
or more of the related topics. The discovery process works for (poly-)hierarchical topic
models by finding matching ancestors between different topics. Because in a hierarchical
model, all topics are related through the root node, there have to be strict limits for the
range of discovery. Two important limits should be considered: No common ancestor
must be selected from topics that are too close to the root node (the definition of “too
close” depends on the size and structure of the topic model) and no common ancestor
must be selected through too many recursive visits to a topic’s parent (this limit defines
which topics are considered to be “related”). The discovery of related topics should be
applied recursively, until no more new topics are found or a recursion limit has been
reached. If we apply this method to our previous problem, we will see that the more
relevant related topics still score lower than the less relevant single topic, but the highest

scoring topic will be the common ancestor of the related topics.

To bring it all together, the three proposed methods must be combined in reverse order:
In a first step, we try to discover common ancestors for related topics and add them to
the documents in the result list. Then, the modified version of tf-idf is calculated for all
topics in the result list. Finally, 7,4 is calculated and each topic’s score is multiplied

with it’s corresponding tf-idf value.
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4.3.2 Topic Shift

After we have determined the most relevant topics for the latest query, the next step is
to use these results to adjust the topic centroid of the search session. The topic centroid
is defined as a set of topics that are relevant for a search session and which will be
preferred over other topics in subsequent queries. It can be stored as a list of tuples,

each consisting of a topic ¢t and a score s.

If there is no topic centroid yet, we can simply copy the results of the first topic aggrega-
tion. Otherwise, updating an existing topic centroid with the latest topic aggregation is
a problem similar to the one discussed in 4.2 Query Aggregation: we want the centroid
to adjust to more recent queries but still preserve the general topic of the search session

in it’s entirety.

Let’s start once more with a simple solution and go from there: We can join the topic
centroid with the latest topic aggregation by simply adding the new topics and summing
up the scores of all matching topics. This would preserve all topics in a session and
rank the most frequent and highly scored topics as most important, which are decent
properties. Still, over a longer session a large number of topics may accumulate and it
will get harder for new topics to replace existing ones, thereby locking the search results

in on the dominant topics of the first few search queries.

To mitigate this issue, we multiply the score of each topic in the topic centroid by a fixed
fraction feooidown at each step in the session. When a new topic aggregation is added,
each topic that is not part of the topic centroid is added as-is, while the score of each

already existing topic is calculated according to this formula:

§ = max (sold7 3new> + Wshift min (Solda Snew)

where s, is the existing score in the topic centroid, Sjeq. is the new score in the topic
aggregation and wgp; ¢ is a value between 0 and 1 that determines the rate at which
scores will accumulate over time. This method will ensure that recurring topics have
more weight than infrequent ones, but not too much to dominate the search session even

if other topics become more important.

As an example, let’s assume a topic model consisting only of #; with a score of 1,
feooldown = 0.8 and wgp;rr = 0.5. Now a new aggregation is to be added, where 3 = 0.9
and t; = 0.7. As to was not part of the centroid before, we can simply copy it’s value.

The current value of ¢; is multiplied with f.ooidown, Which results in 0.8 and the new

13



score is calculated: s = max (0.8, 0.7) +0.5-min (0.8, 0.7) = 0.8+ 0.5-0.7 = 1.15. Even
though the score of ¢; was lower in the new aggregation, it’s score in the topic centroid
remains higher due to it’s history, but not out of reach for the new topic to, which may

take over after the next query.

How exactly the topic centroid should influence the result list of the next query is not
yet defined and will be part of future work. The general idea is to add documents about
topics that are part of the topic centroid to the result list, even if they do not match the

query terms, and to boost document scores, if their topics are part of the topic centroid.

5 Implementation

In order to put the theoretical benefits of a session-based collaborative search engine
to the test, the prototype of a search engine was built as part of this work. At the
time of writing, it allows session-based search on a small collection of scientific papers.
This prototype will become the foundation for future work, in which the problems of
collaborative search and the implementation of a more sophisticated topic model shall

be approached.

5.1 Document Collection

Selecting a suitable document collection for the search engine was not a trivial task.
It should not be subject to restrictive licensing and be available at low cost or free of
charge, to make it as painless as possible for other researchers to reproduce the results of
this work. This is a common issue with contemporary research on session-based search,
which relies on data sets like those used in the TREC Session Track [37] or the HCIR
challenge [38], which are either expensive to receive (e.g. shipping of hard drives) or only
available to selected researchers under a non-disclosure agreement. Also, the document
collection should be suitable for exploratory search, which means the topics must support
non-trivial search interests and be diverse enough, so that the user has the chance to

find more relevant answers after several query iterations.

A source that fulfills these requirements is arXiv [39], a digital repository of scientific
papers in the fields of mathematics, physics, computer science and more. All papers
submitted to arxiv.org are freely available to the public and dumps of the entire document
collection (currently about 1.2 million papers) are available for a small fee that covers

the cost of bandwidth. In the most prominent categories, the number of submissions is
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probably large enough to give a representative sample of the research done in this field,

which is an important prerequisite for exploratory search.

For the current prototype of the search engine, a full-text index of papers submitted to
arXiv in the category computer science has been built. This subset consists of ~110.000
papers, which account for 67 GB of PDF documents or about 5 GB of plain text (un-

compressed, utf-8).

arXiv provides metadata for it’s records through a public API which conforms to the
Protocol for Metadata Harvesting of the Open Archives Initiative (OAI-PMH) [10]. This
allows us to reliably retrieve information like the title, abstract and list of authors that
would otherwise have to be extracted from the PDFs and provides some additional

metadata like the date of submission and a list of categories.

To handle these data sources, we have written a set of tools (see folder index-builder in

the attached source code repository). It contains

e a crawler for the metadata-API that stores relevant information about all papers
in a single JSON file.

e a PDF parser based on the pdfminer library [11] that extracts the content of each

paper as plain text.

e a script that maps the categories of each paper to the ACM Computing Classifi-
cation System of 1998 [12].

e a script that creates and populates the search index

The mapping of categories was necessary because arXiv uses two different classification
systems for computer science papers (ACM’98 and CoRR) that are not compatible.
These categories are used in this work as a preliminary alternative to a proper topic
model, so the choice was made to map all categories to the ACM system, which is more

detailed and hierarchically organized.

In this work, Elasticsearch [13] is used as search index. Elasticsearch is a distributed full-
text search engine based on Apache Lucene that solves most of the standard information
retrieval tasks that lay the foundation for a session-based search engine. The mentioned
script initializes a new Elasticsearch index and stores each paper as as a record containing

the full-text content along with all metadata.
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5.2 Search Engine

The prototype of the search engine consists of a web application written in Python that
uses the micro web framework Flask [11] to process queries and serve search results. The
actual full-text search is being handled by Elasticsearch, which exposes it’s REST API

to the search engine.

Indexing The search index contains all documents and their metadata in raw and an-
alyzed form. The raw form allows us to access each document by it’s identifier and
retrieve it’s contents like in a regular DBMS, while the analyzed form enables us to effi-
ciently run full-text queries on an inverted index and retrieve a ranked list of results [15].
Before text fields are added to the inverted index, they are usually transformed by an
analyzer, which is an algorithm that typically consists of tokenization (splitting a string
into terms) and normalization (character encoding, casing, etc.). For text fields, two
analyzers will be used: The standard analyzer splits text on word boundaries, removes
most of the punctuation and converts all terms to lowercase. Elasticsearch also offers a
specific analyzer for the English language, which additionally removes a set of common
stopwords and transforms words to their base form using the Porter stemming algo-
rithm [17]. There is also the option not to analyze a field at all, which won’t let us
search it’s content, but allows us to use exact string matching. If a query is executed
against an analyzed field, the same algorithm will be applied to the query (otherwise

the query terms may not match the analyzed tokens).

Each field in the index has zero or more analyzers assigned. Fields that are not supposed
to be searchable (identifiers, URLs) were not analyzed, date fields got a specific date
analyzer assigned and all text fields were analyzed with the English analyzer (title,
authors, abstract, full-text). Some fields additionally have the standard analyzer applied
(e.g. the authors, which often contain non-English names) or no analyzer to support

exact matching (e.g. on document titles).

Query Execution Each query submitted by a user is executed in the context of a search
session. This is also true for the first query of a user, although the session context will
be empty. Figure 1 visualizes the steps that are executed by the search engine for each

submitted query.

This section contains a few magic numbers that, if not noted otherwise, are purely based

on experience and may change in future work with improved evaluation methods.
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Figure 1: query formulation and execution in a search session

Correcting spelling errors is the first step, because it allows us to search for what the
user meant, not what might have been typed accidentally. Spell checking is done using
Hunspell [16] backed by an English dictionary, which generates decent results, but it just
provides us with a list of words whose spelling is similar to the misspelled one and not
with the most likely correction. Also, the dictionaries available for Hunspell often don’t
contain contemporary technical terms, which results in lots of false positives for expert
document collections. In future work, it is planned to include much larger dictionaries
based on word frequency lists generated from the document collection and the Google
Books Ngram Corpus [48], which should allow us to pick the most relevant correction

and significantly reduce the amount of false positives.

The next step is query reformulation, where the actual query is built that gets submitted
to the search backend. Two methods are applied for full-text search: boolean query and
phrase matching. The boolean query finds all documents that contain at least 67% of the
terms in a query. This gives us a good recall, but more specific results can be retrieved
using phrase matching, which is much more restrictive in that it requires all terms to
appear in the same order as in the query, but therefore allows us to find contingent

sequences of terms in a document. The requirement of having a strict ordering can be
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slightly relaxed by allowing Elasticsearch to move query terms for a certain distance,
which will increase recall at the cost of precision. Both query types are connected using
the OR operator, and because the phrase query returns much fewer, but more relevant

results, it’s score will be boosted by a factor of 3.

For both query types, matching occurs on different fields with different weights w, relative
to the weight of a match on the analyzed document text which is defined to be w = 1. A
match in the document’s abstract has a weight of 2 and w = 3 is given to a match on one
of the authors or the analyzed title of a document. An exact match on a document title
however results in weight of 4. Therefore, a while a boolean match on the document text
would result in a weight w = 1, a phrase match on the title of a document would benefit
from both the boost for phrase matching (3) and the document title (3), resulting in

w = 9.

Now that we have defined a way to formulate a single query, we can apply the same
method to terms from the query history. As described in Section 4.2, we concatenate all
queries in the history using the OR operator and apply the weight function to determine
the influence of each query to the overall result. In future work, it is also planned
to include the most relevant terms from documents that are part of the current topic

centroid.

The formulated query is converted to a format that can be interpreted by the REST
API of Elasticsearch, which then executes the actual full-text search. The result is a list

of documents matching the search criteria, in descending order of their match score.

In step four, the scores of the resulting documents are adjusted based on the current
topic centroid. The goal is to prefer documents that are about one or more of the
topics that are currently considered to be most relevant, even if their score as a result
of the full-text search is relatively low. This is achieved by multiplying the score of each
document that occurs in one of the topics from the topic centroid with a factor that is

derived from that topic’s current score.

Finally, the topic centroid must be updated (or created) based on the re-scored search
result. In Section 4.3 this process has already been discussed in detail, but it has not

yet been implemented in this prototype.

User Interface The prototype of the search engine provides a minimalist web interface
that comes in the form of a traditional search engine results page (SERP) [19], sans

advertisements. Figure 2 shows it’s main contents:
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Figure 2: screenshot of the prototypical search engine results page

1. query box: a form field where subsequent queries can be submitted (contains the

last query by default)
2. reset button: discards the query history and starts a new session
query history: all recently entered queries that contribute to the search results

the first search result (dashed box with green background)

oro W

title of the search result (links to the paper’s summary page on arxiv.org) and list

of authors (each name links to a search for other papers by this author)
6. direct link to the PDF version of this paper on arxiv.org

7. text snippets from the paper with highlighted search terms (also including terms

from past queries in this session)

This user interface will be the foundation for upcoming work, in which a visualization

of the topic centroid and social features for collaborative search are planned.

6 Future Work

The prototype of the search engine relies on the categorization of a document by it’s

submitter, which tends to be inconsistent and not very detailed. We plan to implement
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LDA topic models as described in Section 3 using the Gensim [20] library. To approach
the issue of automatic topic labelling, additional knowledge resources must be harvested.
Therefore it is intended to build a full-text index of the English Wikipedia that reflects
the link structure between articles and to implement functions to map from topics to

Wikipedia articles or categories [31, 32].

The implementation of session-based search must be adjusted to support LDA topic
models. We intend to add support for topic identification, as described in Section 4.3,
which will also require some experimentation to find reasonable values for the parameters
of various functions. Furthermore, it is planned to harness more of the available session
data like the information about clicked search results. As there are no off-the-shelf
solutions for these problems, the implementation is likely to be more time-consuming

than the topic modeling task.

Collaborative search is an issue that has been neglected in this work so far. We intend
to give users of the search engine the option to start a joint search session with other
users, where a common topic centroid will be calculated from the query history of all
participants. This leaves some challenging questions: What is the best way to derive
topics from multiple distinct query histories and how does a common topic centroid
influence the search results of participants? Collaborative search will require an intuitive
user interface that allows participants to share results and help them with their research,
but which at the same time does not distract them from their actual research task.
The implementation of the Ul as well as the actual server-side implementation of the

collaborative search will require a considerable effort.

Furthermore, there are a few subjects concerning the search engine that should be ad-
dressed: the document collection should be expanded to cover all papers submitted to
arXiv, which will remove the bias that was introduced by selecting a small subset of the
entire collection. The frontend of the search engine is currently very conservative, which
helps with usability, but fails to make use of the topical knowledge of the search engine.
Therefore it is planned to visualize the current topic centroid and give users the option

to use the suggested topics to navigate and explore new topics.

7 Conclusion
We have surveyed session-based search, an information retrieval method that treats each

query in the context of a search session and provides results based on recent queries and

user interaction with search results. From past queries and search results we discover

20



the search interest of the user and serve relevant results that are not strictly required to
match the query terms. From an unlabeled document collection we build a topic model
using latent Dirichlet allocation, which helps us to discover the abstract topics that are
hidden in the documents and to build an ontology that mirrors the structure of our
knowledge base. We have presented the prototype of a session-based search engine that
allows us to find publications that have been submitted to the online-repository arXiv.
It was our intention to make the results of this work easily reproducible, therefore the
prototype and all tools required to build the document index have been disclosed. In
future work, we plan to add support for more sophisticated topic models, to evaluate
the performance of the session-based search in practice and to implement functions that

allow multiple users to collaborate in the same search session.
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