
GraphLab

a review of the distributed data analysis platform

Sebastian Straub
sebastian.straub@mailbox.tu-dresden.de

ABSTRACT
GraphLab was the first distributed computing platform that
was able to efficiently handle graph algorithms with strong
data dependencies as well as machine learning algorithms
on a large scale. The developers achieved this by radically
changing the way data was handled by the worker nodes:
While customary frameworks like Apache Hadoop focus on
the parallel batch processing of large lists of independent
data sets stored in a distributed file system, GraphLab mod-
els all data in a distributed graph that is stored in memory
and therefore allows fast access to interdependent data sets.
This approach that to this day is unique among distributed
computing frameworks allowed GraphLab to become an im-
portant player in the field of machine learning and data min-
ing.
Since the release of GraphLab as a distributed comput-

ing platform in 2012, new competitors like Apache Spark
and Giraph have emerged. Built on top of Hadoop, these
frameworks try to tackle the issue of strong data dependen-
cies with a rather customary approach – yet not without
success. In this work, we will give a review of the devel-
opment of GraphLab and introduce the core concepts be-
hind the framework. After a short performance review, we
will discuss the benefits of the different technology stacks
used by GraphLab and it’s competitors as well as the future
prospects of the different players.

Unless noted otherwise, all statements in chapters 1 through
4 are based on the 2010 [3] and 2012 [2] papers that were
published by Guestrin’s team along with each major release
of GraphLab.

1. INTRODUCTION
Machine learning (ML) tasks have become an integral part

of data analytics for many businesses, and with the growing
size of data sets that are being processed, there is a strong
demand for ML algorithms that can handle big data prob-
lems. Yet even today, the proportion of multithreaded im-
plementations among ML algorithms is rather limited, and
the numbers get even worse when it comes to distributed
solutions.
In 2010, when GraphLab was published, Hadoop was still

the de facto standard among distributed computation frame-
works. But while Hadoop scales very well for tasks with little
to no computational dependencies among the tasks that are
being processed, it fails when strong computational depen-
dencies are given. Scheduling flexibility and globally shared
state are also common requirements for many ML algorithms

which Hadoop does solve efficiently on its own.
Hand-crafted solutions on the other hand can be highly

efficient and scalable, but they tend to get complex (and
therefore error-prone), as they force the developer to solve
the same design issues over and over again.
GraphLab is a graph-based distributed computing frame-

work which was designed with the special requirements of
many ML algorithms in mind: It provides fast and consis-
tent access to interdependent data as well as globally shared
state and it provides the necessary scheduling flexibility.
GraphLab was launched in 2009 at Carnegie Mellon Uni-
versity by Prof. Carlos Guestrin. The core components are
written in C++ and released under a free software license.
In GraphLab, data is stored as vertices in a graph, while

dependencies between them are encoded as directed edges.
User-defined update functions can modify a vertex and it’s
adjacent (dependent) edges and vertices on the graph. The
framework executes these update functions in parallel, fol-
lowing the selected scheduling strategy.
While the first version of GraphLab in 2010 was limited to

the shared memory setting (i.e. it could only parallelize exe-
cution on a single machine), the second major release in 2012
extended the framework to the distributed setting. This
required a proper solution for more design issues like dis-
tributed graph partitioning, shared memory access, schedul-
ing and fault tolerance. The distributed version was a suc-
cess, outperforming implementations of ML algorithms in
Hadoop by two orders of magnitude and competing with
hand-crafted solutions, while only a small fraction of the
code is required for the actual implementation in GraphLab.
In 2013, Guestrin successfully launched Dato Inc., a com-

pany that develops proprietary extensions such as efficient
ML algorithms and big data analytics solutions based on
GraphLab.

2. GRAPHLAB: SINGLE MACHINE
When Guestrin’s team started working on GraphLab in

2009, they focused their attention on the idea of having
a highly parallel graph-based computation framework that
scaled well enough for common machine learning algorithms.
Not having to consider issues like distributed memory or

network latency allowed the team to release the first version
of GraphLab already in 2010, and in order to provide for
sufficient computing power, they ran their tests on a multi-
socket machine with 4 CPUs and 64GB of shared memory.
This caused a hard limit for the size of the data graph, which
has to fit into memory at all times, but allowed for excellent
performance and a rich variety of scheduling algorithms.

mailto:sebastian.straub@mailbox.tu-dresden.de

2.1 Related Work (2010)
In 2010, the competitors of GraphLab presented as fol-

lows: There were machine learning libraries, which could
not handle big data, and there were distributed computing
frameworks, which could not handle common ML tasks, or
at least not efficiently.
Here’s a short roundup of the alternatives at the time of

the initial release of GraphLab:

• scikit-learn1 is a popular free software machine learn-
ing library written in Python which provides imple-
mentations of a large variety of ML algorithms. The
vast majority of them however is single-threaded and
scikit-learn is not a framework that can be easily ex-
tended to support custom parallel or even distributed
algorithms.

• Apache Hadoop2 is the first free software distributed
computing framework that can handle data on a petabyte
scale. Hadoop’s MapReduce engine can apply batch
processing tasks on files that are stored in the dis-
tributed file system HDFS.

• Dryad was a research project from Microsoft that was
discontinued in 2011. It modeled data flow in a di-
rected acyclic graph (DAG) which allowed for a vari-
ety of operations, but resulted in strict execution plans
with low scheduling flexibility. Only later projects like
Apache Spark and Hive brought the DAG model to
it’s full potential.

2.2 Components
The GraphLab abstraction consists of a graph that holds

all data and models dependencies between individual data
sets. Additional information can be stored in a table that
is initially empty, but can be filled during runtime by func-
tions that inspect the state of the graph. The actual work
is done through update functions that are executed in par-
allel, each on a single vertex and it’s direct neighbourhood.
A customizable scheduler has influence over the order of ex-
ecution and the allowable degree of parallelism.

Data

DataData DataData

Data

DataDataDataDataDataData

DataData
DataData

Data

1
DataData

2
DataData

3
DataData

4
DataData

Data Dependency Graph

Shared Data Table

CPU 1

CPU 2

CPU 3

Update1(v1)

Update2(v5)

Update1(v3)

Update1(v9)

…

Execute Update

Scheduler

Figure 1: framework components

2.2.1 Data Model
The core data structure of the GraphLab framework is

the data graph G = (V, E), a directed graph where both
vertices v and edges (u→ v) can store arbitrary data in
1http://scikit-learn.org
2http://hadoop.apache.org

the form of C++ primitives or objects. Data associated
with a vertex v is denoted as Dv and for edge (u→ v) as
Du→v. There are no limitations concerning the topology
of the graph, but there is no way to change the graph’s
structure once it’s been initialized.
GraphLab’s secondary data structure is the shared data

table (SDT), an associative map T [Key] → Value which
also stores arbitrary values.
While the data graph models computational dependencies

and stores the current program state, the purpose of the
SDT is to support globally shared state.

2.2.2 Update Functions
Computations in GraphLab are performed through up-

date functions that work on the neighbourhood of a vertex.
The neighbourhood Sv of a vertex v (scope of v) is defined
by v, it’s adjacent edges (both incoming and outgoing) and
all neighbouring vertices. The data associated with vertices
and edges in Sv is denoted as DSv .
An update function is a stateless local computation on the

neighbourhood of a vertex v, with read access to the SDT:

(DSv , T)⇒ (DSv) , short notation: f (v)

AGraphLab programmay consist of multiple update func-
tions which are executed by the GraphLab engine in parallel.

2.2.3 Sync Mechanism
The sync mechanism is GraphLab’s method of aggregat-

ing data over the entire graph. In it’s most basic form, it
is the equivalent of the higher order function fold over all
vertices, where the result is written under a specific key into
the SDT.
GraphLab provides different operation modes for the sync

mechanism, which give the developer the freedom to weigh
performance against strictness of execution, depending on
the requirements of the algorithm.
The sync mechanism can interrupt the execution of up-

date functions until the result has been written to the SDT,
or it can run asynchronously with the update functions.
While the blocking mode guarantees consistency of the ag-
gregated results, higher performance can be achieved with
the asynchronous execution model. As slightly decreased
precision can be acceptable for many ML algorithms, the
increase in performance often outweighs the benefits of ab-
solute consistency.
The sync function itself can be executed sequentially or in

parallel. While the sequential variant is easy to implement,
it does not scale very well for large graphs. For a parallel
execution, an additional function is required that combines
the results of multiple folds.
For the sync mechanism to work, a key k, an initial (neu-

tral) aggregation value r0 and up to three functions have to
be defined:

• fold: (DSv , ri)⇒ ri+1

• merge: (ra, rb)⇒ rc

• apply: (ra)⇒ (ra′)

Fold takes the scope of a vertex and the so far aggregated
result (which defaults to r0) and updates the aggregated
value based on the new input. Contrary to it’s functional
equivalent, GraphLab’s fold function can have side effects,

http://scikit-learn.org
http://hadoop.apache.org

i.e. it can modify data in Sv according to the rules of a
regular update function.
Merge is an optional function that combines the aggre-

gated results from two fold functions that have been exe-
cuted in parallel. When merge is not provided, fold can
only run sequentially.
Apply is the last function that is called before the result

is written to the SDT under the specified key k. It takes the
result that was aggregated over all vertices and allows the
developer to make some final adjustments.

2.2.4 Data Consistency
Because update and fold functions can be applied to ver-

tices with overlapping scopes, the parallel execution may
lead to race conditions and therefore data inconsistency.
To mitigate this issue, GraphLab defines three consistency
models which give update and fold functions exclusive access
to their respective neighbourhood or a subset thereof.

Consistency Models.
The GraphLab framework ensures that update/fold func-

tions that share components from different exclusion sets are
never executed in parallel. The available consistency models
are:

1. full consistency: No other function can access Sv while
f (v) is executed. Only vertices that do not share a
common neighbour can be processed in parallel.

2. edge consistency: No other function can access v and
it’s adjacent edges while f (v) is executed. Only non-
adjacent vertices can be processed in parallel.

3. vertex consistency: No other function can access v
while f (v) is executed. All vertices can be processed
in parallel.

The definitions of the consistency models do intentionally
not prohibit unsafe writes to adjacent vertices and edges,
but rather define a scope for a function that can be safely
accessed and let the developer decide, whether certain unsafe
operations should be allowed.

DataData

DataData DataData

DataDataDataDataDataData

DataData

DataData

DataData

DataDataDataData

DataData

DataData

Figure 2: consistency models

While the full consistency model guarantees exclusive ac-
cess to the entire neighbourhood, it also greatly decreases
the amount of operations that can be executed in parallel.
The vertex consistency model on the other hand allows max-
imum parallelism at the cost of unsafe access to Sv with just
the exception of v itself.

Sequential Consistency.
To prove the correctness of a parallel execution, the de-

velopers of GraphLab introduce the concept of sequential
consistency:

“A GraphLab program is sequentially consistent
if for every parallel execution, there exists a se-
quential execution of update functions that pro-
duces an equivalent result.” [3]

This means that if a sequential algorithm is correct, inde-
pendent of the execution order, then it’s parallel equivalent
is also correct, if it is sequentially consistent. In this case,
sequential consistency is guaranteed if only data within the
safe scope of the selected consistency model is accessed. In
case of the full consistency model, this is always the case.
If however the order of execution is relevant, then a proper

scheduling strategy is additionally required for a correct par-
allel execution.

2.2.5 Scheduling Strategies
The scheduling strategy determines in which order and to

which degree of parallelism a list of tasks is executed. In
this context, a task consists of a vertex and a function that
is to be applied to this vertex.
While most of the concepts we have seen so far can be eas-

ily extended to the distributed setting, this is not the case
for scheduling, where problems like communication between
different machines, synchronization and locking are consid-
erable obstacles. In the shared memory setting however,
scheduling is a feasible problem and therefore, a variety of
schedulers is already provided by GraphLab, along with a
construction framework for custom implementations.

Base Schedulers.
GraphLab provides two schedulers that do not provide

any control over the order of execution:

• synchronous scheduler : updates all vertices simultane-
ously, using data from the previous superstate. This
is a blocking algorithm that switches between super-
states in which the results of each update function are
collected and written back to the graph only after the
last update function has been executed.

• round-robin scheduler : updates all vertices sequentially,
but in unspecified order, using the latest available data.

While the synchronous scheduler can execute update func-
tions in parallel (not even bound by the rules of the con-
sistency model), it also requires to synchronize once during
each superstep and to write back the results, which causes
some computational overhead. The round-robin scheduler
on the other hand cannot run in parallel and is non-deterministic
(results vary based on the execution order), but there is no
computational overhead.

Task Schedulers.
More control over the order of execution and the tasks

that are included into the scheduling strategy is provided
by the two task schedulers, which start with an initial set of
tasks and terminate as soon as the task queue is empty:

• FIFO: Allows update functions to add tasks to a queue,
which are executed in the order in which they’ve been
added

• Prioritized: Allows update functions to add tasks, but
also to reorder them by defining different priorities for
each newly added task

Each of these schedulers is available in a strict (sequential)
and relaxed (parallel) version, the latter of which increases
performance, but does not guarantee the exact order of ex-
ecution.

Set Scheduler.
The set scheduler is GraphLab’s scheduler construction

framework. It is based on the synchronous scheduler, but
gives the developer as much control over the order of execu-
tion as desired.
The set scheduler takes a set of vertices and an update

function, applies this function to all vertices in the set, col-
lects the results and writes them back into the graph; same
as the synchronous scheduler would do. By providing a list
of vertex set and update function pairs [(Set 〈v〉 , f)], we gain
more control over the order of execution, while retaining the
amount of parallelism the set scheduler provides.
By leveraging the data dependencies that are represented

in the graph, GraphLab can even launch the next task, be-
fore the current one has been completed, if there is no over-
lap between the scope of the vertices that are involved.

3. GRAPHLAB: DISTRIBUTED
Since the initial release of GraphLab in 2010 which fo-

cused on parallel machine learning algorithms in a shared-
memory setting, the developers pushed toward an extension
of the framework to the distributed setting. While the single
machine approach can be very efficient, it is also the cause
for a variety of constraints, which can be mitigated through
expensive workstation hardware, but not resolved. The scal-
able and more cost-efficient way to go was to prepare the
framework for the distributed setting. Also, in order to be
able to compete with existing distributed computing frame-
works like Hadoop, GraphLab actually had to be able to
work in the same setting.
In 2012, the new version of GraphLab was released, de-

scribed by the developers as a “high-level distributed ab-
straction that specifically targets the asynchronous, dynamic,
graph-parallel computation found in many MLDM [(Ma-
chine Learning and Data Mining)] applications while hiding
the complexities of parallel/distributed system design”. [2]

3.1 Related Work (2012)
While we have seen that in 2010 the amount of GraphLab’s

direct competitors was fairly limited (see section 2.1), the
situation has changed in the following two years:

• Apache Giraph3 is “an iterative graph processing sys-
tem built for high scalability” that was originally started
by Google under the name Pregel [4]. While it is not
specifically built for ML algorithms, GraphLab proves
that efficient graph processing can set the foundation
for distributed machine learning algorithms.

• Apache Spark4 is a general-purpose cluster computing
framework based on the DAG abstraction and extend-
ing the Hadoop platform with dozens of functional
primitives beyond the already available map/reduce.
Spark allows the developer to code in a functional
style that is not limited to fixed map/reduce steps,
which gives the necessary scheduling flexibility that

3https://giraph.apache.org/
4https://spark.apache.org

is required by many ML algorithms, but (at least in
2012) did not provide any implementations of those.

• Apache Mahout5 is a library that provides free imple-
mentations of distributed machine learning algorithms,
many of which are based on the Hadoop platform. Be-
cause Mahout does not ship with it’s own distributed
computing platform, performance always depends on
the underlying framework that is used.

While all of these frameworks have their advantages over the
MapReduce pattern, which in comparison is a fairly simple
and also limited approach, none of them was in a stable
release state in 2012. Hadoop was still one of the biggest
players in the field of distributed computing, making it the
rival of choice for the GraphLab developers.
Besides using one of the existing frameworks, there is of

course always the option to write a custom distributed im-
plementation of a ML algorithm. Such implementations can
be highly efficient, as they do not have to conform with any
restrictions imposed by a framework, but they also require
the developer to solve all obstacles imposed by distributed
computing from scratch.

3.2 Problem Analysis
In order to extend GraphLab to the distributed setting,

the developers had to solve a variety of new problems that
do not have to be considered in the shared memory environ-
ment.
Graph partitioning is required if multiple nodes are

to work on the same graph. A good partitioning scheme
distributes data according to the computation power of each
node, minimizes the number of edges that cross between
machines and allows efficient load balancing on clusters of
varying size. GraphLab supports several distributed graph
partitioning heuristics and uses initial over-partitioning to
allow for load balancing without repartitioning.
Inter-worker communication was realized with TCP/IP

connections between workers using a custom communication
protocol. The amount and type of data that has to be trans-
ferred depends on the execution engine which we will review
in section 3.4.
Shared memory access is a problem that can be cir-

cumvented to a certain degree through efficient graph par-
titioning and messaging between individual workers. Still,
GraphLab wants to maintain the concept of SDTs (see 2.2.1),
which was realized by making a read-only table available in
a distributed file system.
Fault tolerance is a valid concern when long-running

jobs are executed on dozens of machines that consist of com-
modity hardware. GraphLab relies on a checkpoint mecha-
nism that runs asynchronously (via sync functions, see 2.2.3)
in regular intervals in order to minimize the performance
impact. With a modified version of the Chandy-Lamport
snapshot algorithm, GraphLab guarantees consistent snap-
shots under the condition that at least edge consistency is
used on all update functions.

3.3 Process Overview
Before we take a closer look at the GraphLab engine, we

will provide a summary of the distributed GraphLab pro-
cess. Figure 3 shows the two main phases:
5https://mahout.apache.org/

https://giraph.apache.org/
https://spark.apache.org
https://mahout.apache.org/

Figure 3: process overview

During initialization the graph is partitioned into the
so called atom collection that contains way more partitions
than there are workers currently available. Each atom con-
tains information about edges to vertices stored in other
atoms (called ghosts). All atoms are stored in the atom
index which represents dependencies between atoms that
result from the edges that cross atom borders. The entire
graph partitioning scheme was implemented as MapReduce
job, which results in higher performance and solves the dis-
tribution problem, as all atoms are stored in HDFS (or a
compatible file system) anyway.
In the execution phase, each worker gets a number of

atoms assigned, joins them to a single graph and resolves
all internal ghosts (edges to atoms that are stored on the
same machine). Then the GraphLab engine takes over and
solves the desired computation by executing the user defined
update functions. The resulting atoms are written back to
the distributed file system.

3.4 Distributed Engines
In the shared memory setting, scheduling is a problem

that can be solved rather easily, as we have seen in section
2.2.5. In the distributed setting however, where each ma-
chine contains only a partition of the data graph, a number
of new problems arises:
• Enforcing the consistency model is hard, as each ver-
tex may have edges to vertices that reside on different
physical machines.

• Enforcing a specific order of execution is hard due to
network latency between machines.

• Data transfer between different partitions (and there-
fore machines) is slow, in terms of both throughput
and latency.

GraphLab provides two execution engines that solve these
problems. The chromatic engine follows a synchronous schedul-
ing strategy based on graph coloring, while the locking en-
gine uses a fully asynchronous approach where workers ac-
quire locks for every update function they execute.

3.4.1 Chromatic Engine
The approach of the chromatic engine is to identify sub-

sets of vertices that can be updated in parallel in accordance
with the selected consistency model. Therefore, the chro-
matic engine can be seen as an extension of the set scheduler
that was introduced in section 2.2.5.

To find these subsets and communicate the to all ma-
chines, a vertex coloring is applied ahead of time, so that no
adjacent vertices share the same color. Update functions are
then executed synchronously on vertices of the same color
on all machines. After each “color-step”, as GraphLab refers
to it, execution is halted until all workers have finished and
the next color is selected.
Depending on the consistency model, different methods of

graph coloring are required. Vertex coloring is sufficient for
the edge consistency model, while the full consistency model
requires a second-order vertex coloring (no vertex shares the
same color as any vertex that is one or two hops away). The
vertex consistency model on the other hand can be trivially
implemented by assigning the same color to all vertices.
To further increase performance without sacrificing cor-

rectness, changes to ghosts are communicated asynchronously
while they are made. This results in a more efficient net-
work use and decreases synchronization time, as most of the
updates have already been transferred.
The chromatic engine works best for problems whose struc-

ture always allows for a representation with few colors (e.g.
two-colorable graphs) or where dependencies between edges
are low. Drawbacks are imposed by the strict requirement of
a full synchronization between all workers after each color-
step and the low scheduling flexibility.

3.4.2 Locking Engine
Instead of analyzing dependencies ahead of time, the lock-

ing engine just runs update functions that were scheduled in
a (possibly prioritized) queue on each machine and acquires
locks for all resources, both locally and remote, that require
exclusive access, as specified by the consistency model.
Each machine is only allowed to run update functions on

local vertices. The ghosting system guarantees that all data
in the scope of a vertex is cached locally, which reduces
network load. Before an update function can be executed,
a lock request is generated and sent to all machines that
store vertices within the scope of the function through a dis-
tributed continuation passing scheme. This works by pass-
ing a message containing all lock requests through a ring
of all worker nodes. As each lock request must contain all
vertices that are required for an update function to work
and the machines are asked for locks sequentially, deadlocks
cannot occur.
Only after all locks have been granted, the update func-

tion is executed by the requesting worker. Local results

are stored immediately and changes to ghosts are passed on
to the continuation passing scheme, along with the release
messages for the locks.
To reduce blocking times, all lock requests are pipelined,

which means that update functions are not necessarily exe-
cuted in the order imposed by the (priority) queue, but as
soon as the lock for the update function has been granted.
Still, higher priority is given to update functions that are
earlier in the queue.
The locking engine provides decent scheduling flexibility

through priority queues and scales almost linearly for suffi-
ciently large graphs. Performance can be increased by in-
creasing the pipeline length (at the cost of reduced control
over the order of execution) and degrades for graphs with
a very high clustering coefficient, as large portions of the
graph may have to be locked for a single update function to
be executed.

4. PERFORMANCE ANALYSIS
As of 2015, there was no thorough independent perfor-

mance analysis of GraphLab in comparison to other dis-
tributed computing frameworks. Therefore we will present
the benchmark results that were published by the developers
of GraphLab in 2012 [2].
The GraphLab developers performed their tests on Ama-

zon EC2 with up to 64 nodes, each with a (then) state-
of-the-art quad core CPU, 22GB RAM and a 10 Gigabit
Ethernet connection. For the purpose of the benchmark,
three applications have been implemented and tested:
• Netflix movie recommendation: A recommender sys-
tem based on collaborative filtering that predicts the
rating of a user for arbitrary movies by comparing the
ratings that were provided by that user to those of
users with similar taste. It was implemented using
the alternating least squares (ALS) algorithm, which
works on a sparse users by movies matrix. In GraphLab,
the matrix was represented as a bipartite graph where
each user has weighted edges to all movies they rated.

• Video Co-segmentation (CoSeg): This application “iden-
tifies and clusters spatio-temporal segments of video
(...) that share similar texture and color characteris-
tics” [2] which can be useful in computer vision tasks
(e.g. robotics). The implementation uses Gaussian
Mixture Models to estimate the best label for each
fixed-sized partition of each frame from color and tex-
ture statistics. The algorithm then connects adjacent
partitions in space (2D) and time (1D) and applies
Loopy Belief Propagation to smooth the results.

• The third application is about Named Entity Recog-
nition (NER), which can be defined as “the task of
determining the type (e.g., Person, Place, or Thing)
of a noun-phrase (e.g., Obama, Chicago, or Car) from
its context (e.g., ’President __’, ’lives near __’, or
’bought a _’)” [2]. As with the Netflix movie rec-
ommendations, the data graph for this task is bipar-
tite: noun-phrases are connected by an edge to their
respective contexts. The application uses the CoEM
algorithm which predicts a label for all noun-phrases
from a small set of pre-labeled noun-phrases.

Figure 4 visualizes the benchmark results: The left plot
shows the relative performance gain of each application when

Figure 4: Performance analysis of GraphLab. [2]
Left: Scaling of 3 different ML problems on the
GraphLab platform.
Right: Comparison of runtimes for the Netflix prob-
lem.

more machines are added and the right plot shows the ab-
solute runtime (log scale) of the Netflix movie recommen-
dation problem for different numbers of nodes and imple-
mentations. The three implementations that were compared
are GraphLab, Hadoop/MapReduce and a custom imple-
mentation based on the Message Passing Interface (MPI),
a communications protocol used for programming parallel
computers.
For the Netflix application, the Chromatic Engine was

used, as there are no dynamic scheduling requirements and
the graph is trivially two-colorable. The results show that
the collaborative filtering algorithm scales well, but not ide-
ally, with an increasing number of nodes. The results also
show, that the GraphLab implementation is two orders of
magnitude faster than a comparable Hadoop implementa-
tion and can compete well with a custom MPI implementa-
tion of the specific algorithm, although it cannot be verified
how much effort the developers put into the implementation
of their competitors.
The CoSeg application was implemented using the Lock-

ing Engine. This is owed to the fact that there is no trivial
graph coloring for the representation of this problem and
that the filtering algorithm can benefit greatly from dynamic
prioritized scheduling. The test results show that the fully
asynchronous locking engine can scale almost linearly up to
32 machines and continue in with a 10x performance gain
for 16x more machines.
Even though the NER application is two-colorable (and

therefore the chromatic engine was used), it stands out among
the other two algorithms by scaling far worse, even for a
small number of machines. The authors credit this problem
to the high density of the graph, which does not allow for
an efficient partitioning and therefore cause a lot of traffic
between cluster nodes. And indeed, a network traffic analy-
sis showed that transfer rates for the NER application were
usually above 100 MB/s, while for the other application’s
traffic never exceeded an average of 10 MB/s.

Graph Processing Performance.
Apart from the analysis of GraphLab’s performance as

a distributed machine learning platform, which so far was
only done by the GraphLab developers themselves, there
are publications that measured GraphLab’s performance in
comparison to other graph processing tools, using only graph
analytics problems.
In a benchmark by Guo et. al. [1], GraphLab’s perfor-

mance was measured against Apache Hadoop, Apache Gi-
raph, Neo4j and Stratosphere. In most scenarios, GraphLab
clocked in second after Neo4j, except for large problems
where Neo4j failed entirely, as it is not a distributed com-
puting framework. They also showed, that GraphLab was
massively slowed down by single-threaded file loading, which
in some cases would take up more than 90% of the runtime.
Yet even so, due to their much lower computation time,
GraphLab and Apache Giraph (which had similar issues)
were the best performing distributed graph processing tools
in the benchmark.
In a more recent test parcours created by the developers

of GraphX [6], the graph processing module of the Apache
Spark project, the situation was similar: GraphLab was
able to get ahead of Apache Giraph and it performed better
than GraphX. Still, the graph loading time, though greatly
improved, was still an obstacle for GraphLab, which made
GraphX take the lead when the runtime of the whole pro-
cessing pipeline was measured.

5. CURRENT DEVELOPMENT
The development of GraphLab is still in active progress,

but the focus has shifted away from the open source core
towards the proprietary extensions that Dato Inc. provides.
Besides a variety of ML algorithms and data analytics so-
lutions, they also include bindings to other big data ecosys-
tems like Amazon S3, Apache Hadoop and Spark. Still,
these features come at a cost: According to dato.com the
software licensing fees are currently at $4,000 per machine
and year. The proprietary nature of these vital extensions
(as well as the price tag) may be reasons for the popularity
of some of GraphLab’s new competitors.
As of 2015, probably the most important competitor of

GraphLab is MLlib [5], the machine learning library by
and for Apache Spark. MLlib is a collection of ML algo-
rithms and utilities which are implemented using Spark’s
DataFrames. Unlike GraphLab, Spark does not rely on a
distributed data graph; it uses the more traditional way of
distributing data using an underlying distributed file sys-
tem. What makes it different from frameworks like Hadoop
is the large variety of distributed higher-order functions and
a scheduling flexibility that was not provided by the com-
parably simple MapReduce approach. Also, it benefits from
the close integration into the Spark ecosystem, which solves
a lot of problems (like loading times, pre- and post pro-
cessing) that GraphLab had to hassle with for some time.
While Spark’s MLlib is still in an experimental state and
usually less performant than GraphLab, it is free software
that is in active development by a dedicated community
which GraphLab, by it’s now predominantly proprietary na-
ture, can not benefit from.

6. CONCLUSION
GraphLab is a graph-based distributed computing plat-

form tailored for data analytics tasks and specifically for
machine learning algorithms. It’s approach of local update
functions that can only access the neighbourhood of a ver-
tex makes it unique among other frameworks in that it al-
lows to execute algorithms on both large and highly de-
pendent data sets without having the entire graph in the
memory of a single machine. The negative impact of net-
work latency is greatly reduced by the ghosting system and

the asynchronous exchange of data between workers. A dy-
namic scheduling system allows for shorter iteration times
and therefore faster convergence for many analytics prob-
lems.
With these properties, GraphLab stands out among other

distributed computing frameworks like Hadoop, which are
predominantly batch oriented. Through it’s different ap-
proach, GraphLab was able to outperform comparable im-
plementations of machine learning algorithms in Hadoop by
two orders of magnitude and made it possible to solve prob-
lems with heavy computational dependencies without the
need to swap data to disk.
Five years after the release of GraphLab, new competi-

tors have appeared. Apache Spark has seen a steep rise in
popularity and with it’s subprojects GraphX and MLlib it
is targeting the same domain as GraphLab. While both try
to solve problems of the same kind, they do so using an en-
tirely different technology stack that is also reflected in the
style of programming: Spark with it’s functional-style data
streaming approach and GraphLab using the vertex-centric
update functions.
When it comes to performance, GraphLab often clocks in

first, but the gap is closing and it stands to discuss, whether
GraphLab’s largely closed-source approach will win this bat-
tle against the dedicated developer communities of compet-
ing free software projects.

7. REFERENCES
[1] Guo, Y., Biczak, M., Varbanescu, A. L., Iosup,

A., Martella, C., and Willke, T. L. How well do
graph-processing platforms perform? an empirical
performance evaluation and analysis. In Proceedings of
the 2014 IEEE 28th International Parallel and
Distributed Processing Symposium (Washington, DC,
USA, 2014), IPDPS ’14, IEEE Computer Society,
pp. 395–404.

[2] Low, Y., Bickson, D., Gonzalez, J., Guestrin, C.,
Kyrola, A., and Hellerstein, J. M. Distributed
graphlab: A framework for machine learning and data
mining in the cloud. Proc. VLDB Endow. 5, 8 (Apr.
2012), 716–727.

[3] Low, Y., Gonzalez, J., Kyrola, A., Bickson, D.,
Guestrin, C., and Hellerstein, J. M. Graphlab: A
new framework for parallel machine learning. CoRR
abs/1006.4990 (2010).

[4] Malewicz, G., Austern, M. H., Bik, A. J.,
Dehnert, J. C., Horn, I., Leiser, N., and
Czajkowski, G. Pregel: A system for large-scale graph
processing. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data
(New York, NY, USA, 2010), SIGMOD ’10, ACM,
pp. 135–146.

[5] Meng, X., Bradley, J. K., Yavuz, B., Sparks,
E. R., Venkataraman, S., Liu, D., Freeman, J.,
Tsai, D. B., Amde, M., Owen, S., Xin, D., Xin, R.,
Franklin, M. J., Zadeh, R., Zaharia, M., and
Talwalkar, A. Mllib: Machine learning in apache
spark. CoRR abs/1505.06807 (2015).

[6] Xin, R. S., Crankshaw, D., Dave, A., Gonzalez,
J. E., Franklin, M. J., and Stoica, I. Graphx:
Unifying data-parallel and graph-parallel analytics.
CoRR abs/1402.2394 (2014).

https://dato.com/buy/

	1 Introduction
	2 GraphLab: Single Machine
	2.1 Related Work (2010)
	2.2 Components
	2.2.1 Data Model
	2.2.2 Update Functions
	2.2.3 Sync Mechanism
	2.2.4 Data Consistency
	2.2.5 Scheduling Strategies

	3 GraphLab: Distributed
	3.1 Related Work (2012)
	3.2 Problem Analysis
	3.3 Process Overview
	3.4 Distributed Engines
	3.4.1 Chromatic Engine
	3.4.2 Locking Engine

	4 Performance Analysis
	5 Current Development
	6 Conclusion
	7 References

