
1

Live-Hacking
Exploiting common security vulnerabilities for fun and profit

Sebastian Straub
sebastian.straub@mailbox.tu-dresden.de

Abstract—We are surrounded by technology which
in terms of security is broken by design, yet widely
deployed. Our trust in these technologies makes us
vulnerable, no matter what kind of operating systems
or devices we use. We will discuss two examples of
these critical design flaws: First, the issues that come
with the implementation of firmware for USB devices,
which result in an exploit called BadUSB. Furthermore,
we will show that the use of the networking protocol
ARP in untrusted environments turns ARP spoofing,
an almost trivial kind of attack, into a relevant security
issue.
The technologies that are affected by these issues are so
widely deployed that they cannot be changed without
broad consent. Therefore, we will demonstrate how
easily these attacks can be implemented and deployed –
in the hope to raise awareness for the underlying issues.
We will provide source code and detailed instructions
to reproduce these attacks for the purpose of demon-
stration.

Index Terms—IT-Security, Hacking, BadUSB, ARP-
Spoofing

I. Introduction

Every non-trivial technology has flaws and as soon as
we trust that technology with our personal information,
our property or even our life, these flaws become security
vulnerabilities. Today, we are surrounded by software and
devices which have critical security vulnerabilities that are
being actively exploited. In many cases, the vulnerability
was caused by an error (or at least insufficient precau-
tion) by it’s specific creators and is therefore fixable, but
some technologies are flawed by design in a way that the
vulnerability is beyond repair. And yet, some of these
technologies are so widely deployed and the vulnerabilities
so easily exploitable, that the issue can basically affect
anyone.
This paper is about two technologies that are flawed by
design under certain security-relevant aspects, yet widely
deployed: USB devices and public WLAN hotspots. We
will look into firmware hacks for USB devices, which have
become known under the name BadUSB [3] and we will
show how easy it is to launch man-in-the-middle attacks
on WLAN hotspots which rely on ARP, the Address
Resolution Protocol.
We will provide a detailed documentation of these exploits
so they can be reproduced for demonstration purposes.
Furthermore, we have written a command and control
server and a client program which can be installed on the

target system as a result of one of the mentioned exploits.
It is our intention to make users aware of these issues, to
explain how and why these exploits work, how users can
protect themselves and which steps are necessary to solve
the underlying problems.
The source code for the command and control infras-
tructure and the exploits is available in a source code
repository which you should have received together with
this document (if you didn’t receive the sources and are
interested in reusing them – for research purposes only –
please contact Sebastian Straub). The focus of this paper
is the discussion of the exploits, but you may find detailed
instructions how they can be reproduced in the attached
sources.

II. C&C Infrastructure

The purpose of command and control (C&C) infrastruc-
ture is to give a single entity the means to remotely
control a possibly large amount of systems over a network.
Usually, the term C&C refers to software that controls
botnets, which consist of devices that have been infected
with malware. It should be distinguished from remote
control software that was built for non-invasive purposes,
like SSH and VNC.
To visualize the effectiveness of the attacks presented
in this paper, we have developed a C&C server with a
minimalist web interface and a zombie client that will
connect to the server and do it’s bidding.

A. Requirements

In order to gain full control over infected devices, the
owner of the C&C server needs to be able to execute
arbitrary code on the zombie devices.
While the C&C server can be set up with a public IP
address, the zombies usually won’t be directly accessible
over the network, due to NAT and other routing restric-
tions. To allow for bidirectional communication, a long-
living socket connection with the server should be initiated
by each zombie.
While the capability for remote code execution is enough
to control a system, it may be convenient to have the
means to transfer files, e.g. binaries that should be exe-
cuted by the zombie.
For a C&C setup that is supposed to survive in the wild, a
number of other requirements should be considered: native

mailto:sebastian.straub@mailbox.tu-dresden.de
mailto:sebastian.straub@mailbox.tu-dresden.de


2

Figure 1. screenshot of the administrative tool

binaries with a low memory footprint, obfuscation meth-
ods that hide the zombie software on the target system,
proper authentication, strong encryption of all communi-
cation, redundancy of control servers, just to name a few.
Because we are building a tool for demonstration purposes
only, these properties are less relevant.

B. Implementation

All components of the C&C infrastructure were written
in Python. The C&C server provides two services: A web
server for administrative purposes and a socket server for
communication with the zombies.
The web server was built using Flask [1], a web framework
written in Python. It relies heavily on Ajax, so changes
to the connected clients are reflected in the user interface
immediately. The web interface consists of a single page
which contains a list of all zombies that are connected
to the C&C server. Some basic information (IP address,
operating system, memory size, etc.) about each registered
zombie is displayed, as well as it’s current status (online
or offline). More detailed information about the system
can be shown by using the toggle button on the left of
each entry. The action buttons on the right can be used to
execute arbitrary commands on the target system, transfer
files to a predefined location or to shut down the zombie.
The socket server uses a custom communication protocol
that relies on a persistent TCP connection between master
and zombie. TCP sockets provide a bidirectional and
asynchronous communication channel which allows the
client to register with the master and in turn the master to
reuse the connection that was established by the zombie
to send commands. For this purpose, we have designed
a stateless protocol which can be used to invoke events
and transfer data over this connection. The protocol was
implemented on top of Python’s asyncio module.
The zombie software was written in Python as well. Be-
cause it will be used for demonstration purposes only, an
optimized implementation in a machine-oriented language
was not deemed to be necessary. The Python implemen-
tation is platform-independent, but native binaries (that

include parts of the Python standard library) can be built
using pyinstaller. [2] When the zombie is first executed
by an unsuspecting user, it retrieves a configuration file
from a remote server and tries to connect to the specified
master. If the master accepts the connection, the zombie
collects some data about the system it was started from,
sends it to the master and waits for further commands.

III. BadUSB

BadUSB is the name of a firmware hack for USB devices,
first demonstrated by Karsten Nohl, Sascha Krißler and
Jakob Lell at Security Research Labs [3] in 2014. By
modifying the firmware of a USB device, e.g. a USB thumb
drive, the attacker can change the way it identifies itself to
the target operating system and emulate the functionality
of a different USB device like a network interface or a
keyboard, which may allow the attacker to access and
modify critical system resources.
In this chapter, we will show how to turn a regular USB
thumb drive that costs less than 10€ into a BadUSB
device that can take control over a Windows or Linux host.
Furthermore, we will discuss ways how this kind of attack
could be prevented.

A. Attack Vector

Every USB device identifies itself to the operating system
in a specific role, the USB Class Code [4], which defines
how the operating system should handle the device. E.g.
code 08h identifies Mass Storage devices which give the
operating system access to a file system and code 03h
identifies a HID (Human Interface Device) like a keyboard
or a touch pad. Regardless of the class code, each USB
device comes with a firmware that has to be trusted
implicitly by the operating system because it has to be
executed to make the device work. The resources that this
firmware can access are usually restricted by the operating
system’s USB host driver, which grants the necessary
rights according to the USB class code.



3

As we can see, an important part of USB’s security archi-
tecture depends on the class code, which we can change
to our liking if we can manipulate the device’s firmware.
Changing the class code allows us to access more resources
than our device should have the right to, and by further
altering the firmware we can use these rights to execute
malicious code on the target machine.
In this specific attack, we will take a USB thumb drive
(code 08h) and manipulate it’s firmware to identify itself
as a keyboard (03h). In the firmware, we will store a list
of key combinations, which we will execute at a certain
time after the device has been connected. We will use key
shortcuts specific to certain operating systems to open a
command prompt and then paste a small piece of code
that downloads and executes our malware. Ideally, the
unsuspecting user will not even notice the short pop-
up of the command window, as it will be closed again
immediately.
The last part is to get the victim to connect the manipu-
lated thumb drive to their computer. This is best achieved
by social engineering, e.g. by dropping the thumb drive
in the proximity of the victim in the hope that it will be
found, or by sending a letter with a thumb drive inside that
explains there is “important data” on it, or by attaching
the device to the target machine without anyone noticing.

B. Prerequisites
To prepare the attack, we will need:

• a development machine with Windows 7 or later
• a USB thumb drive whose firmware is known to be

manipulable.
• a burner image, which is an executable that can flash

our firmware to the microcontroller on the thumb
drive.

We will use the free software tool Psychson [5] which can
manipulate the firmware of the Phison 2251-03 chipset.
This chipset is used in certain devices of manufacturers like
Toshiba, Patriot and Kingston. [6] For our experiments,
we have used the Toshiba TransMemory-MX 8GB (THN-
U361K0080M4), which at the time of writing can be
bought for about 5€ at retail stores in Germany.
The Phison 2251-03 chipset descends from the Intel MCS-
51 [7] microcontroller family, often referred to as 8051.
Because the Phison 2251-03 uses different variants of the
8051 microcontroller for different types of thumb drives,
it is not trivial to choose the correct burner image for
it, and finding a reliable source can be even harder, as
vendors don’t simply hand them out. For now, the best
sources that are available to the public are shady Russian
websites like usbdev.ru and flashboot.ru. We have included
a working burner image for the Toshiba TransMemory-MX
8GB in the attached source code repository.

C. Implementation
This section will give a short overview on how to create
a manipulated firmware image and flash it to your USB

thumb drive. More detailed instructions can be found in
the folder /badusb in the source code repository.
On our development machine, we will need Visual Studio
2012 or later and SDCC, a C compiler for Intel MCS51
based microcontollers, to be installed. Furthermore, we
have to retrieve the source code for

• Psychson:
https://github.com/adamcaudill/Psychson.git

• USB Rubber Ducky:
https://github.com/hak5darren/USB-Rubber-Ducky.git

Psychson is the tool that will create a functional firmware
image, embed our code into the image and flash it to the
thumb drive.
USB Rubber Ducky [8] is an advanced USB device for
penetration testing, with a dedicated CPU and separate
memory for different attack configurations. It has more
capabilities than regular USB thumb drives, but is also
more expensive and it is special purpose hardware which
is easier to detect than a random off-the-shelf device.
For the Rubber Ducky, the language DuckyScript [9] has
been developed, which allows us to define a sequence of
key combinations and delays between them which will be
executed when the Rubber Ducky is connected to a USB
host.
DuckyScript: Psychson allows us to embed the binaries
generated from a DuckyScript directly into our custom
firmware, so the first step is to write a script using the
DuckyScript language and to generate a binary from it
using the USB Rubber Ducky Encoder.
A basic script that works on Windows would be:

DELAY 3000 wait for 3 seconds
GUI r press Windows key + r

(opens the run prompt)
DELAY 10 wait for 10 ms
STRING cmd enter the string “cmd” into the box
ENTER press Enter

This will open cmd.exe, the default Windows terminal,
after a 3 second delay.
To build a binary from this DuckyScript, we run (from the
folder USB-Rubber-Ducky/Encoder)
java -jar encoder.jar -l de -i keys.txt -o inject.bin

This will encode the script in the file keys.txt into a new
binary file named inject.bin.
Note that DuckyScript generates key events that are
dependent on the current keyboard layout. You may select
the expected keyboard layout by using the -l switch. If
you choose the wrong keyboard layout, your script may
cause other keys to be invoked on the target system than
you’d expect.
Psychson: Psychson allows us to build an empty
firmware image that we can inject our DuckyScript
code in. This firmware image can be built by executing
Psychson/firmware/build.bat.

http://www.usbdev.ru/
http://flashboot.ru/iflash/
https://github.com/adamcaudill/Psychson.git
https://github.com/hak5darren/USB-Rubber-Ducky.git


4

We can now use the executable EmbedPayload.exe, which
is available after we build the project in Visual Studio,
to embed our DuckyScript binary in the empty firmware
image.
Using DriveCom.exe, we can now set our USB device into
boot mode, which allows us to modify the firmware. Then
we can use the burner image to flash our custom firmware
with the embedded DuckyScript commands. This can be
achieved by executing these commands:

Psychson\tools>DriveCom.exe
No action specified, entering console.
>open X:
>boot
>set_burner BN03V104M.BIN
>burner
>set_firmware fw.bin
>firmware
Gathering information...
Reported chip type: 2302
Reported chip ID: 98-DE-98-92-72-57
Reported firmware version: 1.01.10
Mode: Burner
Rebooting...
Sending firmware...
Executing...
Mode: Firmware
>exit

For a detailed explanation what each of these commands
does, please have a look at /badusb/README.md in the
attached source code repository
Attacking multiple operating systems: The USB Class for
Human Interface Devices does not allow us to retrieve any
information about the system that we are dealing with, not
even which kind of operating system we interact with. All
we can do is send a sequence of keystrokes.
The workaround to be able to attack multiple operating
systems with the same device is to find a sequence of
keystrokes that will perform the desired task on each
operating systems. This means that a lot of keystrokes
that are relevant for one system must be silenced on other
platforms or they may cause unexpected results.
For example, this is a script that will spawn a shell on
both Windows and Linux:

GUI r open Windows run prompt.
ALT F2 open Linux run prompt.
STRING xterm enter Linux command.
ENTER execute the command.
ENTER discard the error message

that this produces on Windows.
GUI r reopen Windows run prompt.
ALT F2 open Linux run prompt.
STRING cmd enter Windows command.
ENTER execute the command.
ESC hit ESC two times to close...
ESC ...the error message on Linux.

The complexity of the script increases with each operating
system that is added and each new keyboard layout that

should be supported, but it is possible to use this method
to successfully launch attacks on a variety of operating
systems and keyboard layouts.
Limitations: There is a number of restrictions that need
to be considered with this specific attack using the Phison
2251-03 chipset:

• No access to internal storage: The thumb drive cannot
be used as a regular storage device any longer, as long
as the custom firmware is installed that identifies it
as a keyboard to the operating system.

• Restoring the firmware: To modify the firmware, the
device must be set into boot mode. When the device is
registered as mass storage device or already in boot
mode, Psychson can alter it’s state. But when the
custom firmware is installed, the device is in firmware
mode and registered as HID only, which Psychson
cannot talk to. In order to force the chip back into
boot mode, you have to open the case and short-
circuit two pins on the chip while attaching it to your
USB port. This means that the thumb drive cannot
reprogram or wipe it’s firmware after a successful
attack.

• No access to system resources: USB keyboards cannot
infer any relevant information about the host system,
which means the attack has to be as generic as
possible or targeted at a specific known machine.

• Operating system support: The attack works only
on standard-compliant implementations of USB on
the host system. Our experiments have shown that
the attack works reliably on Windows 7 and various
Linux distributions with Kernel 2.6.x and 3.x, had
occasional issues on Windows 8.1 and never worked
on Mac OS X.

Specialized hardware like the USB Rubber Ducky can
register as both keyboard and mass storage device and
manipulate it’s own firmware on-the-fly. It is likely that
the firmware can properly interact with more operating
systems than Psychson can, but the issue of not being
able to read relevant system resources remains.

D. Assessment

The fundamental issue with this exploit is an old one: We
have to trust the hardware we use. No piece of software
can protect us from a backdoor in the hardware we run
our code on.
The good news is: Hardcoding malware into electric cir-
cuits is expensive and would cause a big PR disaster
for the company that did this without their customer’s
consent. But over the past decades, we have gotten so used
to trusting proprietary firmware without any integrity
checks, that hardcoded malware is not even necessary.
The firmware for any device contains bugs and therefore it
is necessary to be able to update it. But the manufacturers
failed to establish an update process that guarantees that
only legitimate firmware updates can be installed. This



5

means that anyone can alter the firmware of a USB device.
The only implemented “security mechanism” is to hide the
technical documentation on how to do this, which so far
didn’t work too well.

“You have to consider a USB infected and
throw it away as soon as it touches a non-trusted
computer. And that’s incompatible with how we
use USB devices right now.”

– Karsten Nohl, SRLabs [10]
Firmware manipulation can be impeded by making crypto-
graphic signatures for firmware images a requirement that
is enforced by the USB device itself before it accepts any
changes to it’s own firmware. Even if an attacker manages
to overwrite the device’s firmware, operating systems can
detect manipulated firmware if the signature is invalid or
was not created by a trusted third party.
Another issue is that every USB device comes with a
firmware that must be executed by the operating system,
even for devices like flash drives that could by accessed
through a standardized interface that does not require
any third party code to be executed at all. The impact
of manipulated firmware could be diminished, if the USB
devices we share between computers every day would not
ship with any code that has to be executed by the host
system at all.
And while we’re rethinking the way firmware for USB
devices is implemented and secured, it might be worth
considering how much trust we could regain, if we would
finally push for free and open source firmware which can
be reviewed by independent security analysts.
But what about specialized devices that can be used for
malicious purposes by design, like the Rubber Ducky?
It implements a legitimate interface (class 03h, HID)
but uses it’s own resources to generate valid keystrokes
(with possibly malicious outcome). The USB host cannot
distinguish such a device from a legitimate USB keyboard.
Here we return to our original problem: All hardware we
use has to be trusted. If the malware is implemented in
hardware, there is nothing we can do about this from the
software side. But in contrast to the firmware integrity
issues, this is not a design flaw of USB, this is a problem
we face with any piece of hardware.

IV. ARP Spoofing

The Address Resolution Protocol (ARP) is a network pro-
tocol that translates between network addresses (like IP
addresses) and physical addresses (like MAC addresses).
ARP has no authentication mechanism, which was not an
issue when it was designed back in the 1980s, because ARP
packets are only routed within the boundaries of a single
network and back then it was probably fair to assume that
all participants of a local area network can be trusted.
Today, we share a local area network with strangers
every time we log into a public WLAN hotspot. Yet the
technology behind these services is usually still the same

as in our historic example of a walled garden of trusted
participants.
ARP spoofing (or ARP cache poisoning) exploits this
implicit trust by sending forged ARP announcements to
the router and other participants of the network, thereby
redirecting the flow of packets. This technique can be used
to isolate a participant from the network or to intercept
packages that were meant for a different recipient. If the
attacker then forwards the intercepted messages to their
original destination, this is a man-in-the-middle attack.

A. Attack Vector

The goal is to manipulate the network traffic of our target
(let’s call her Alice) in a way that allows the attacker (let’s
call him Mallory) to install malware on her computer.
Mallory will use ARP spoofing to launch a man-in-the-
middle attack against Alice and then inject a piece of
JavaScript code into every HTML page that is served to
her.
First, Mallory will redirect messages sent and received by
Alice to his own machine. To achieve this, Mallory sends
two ARP announcements:

• one to the router of the LAN that informs him that
Alice’s IP address should from now on resolve to
Mallory’s MAC address

• one to Alice, which informs her that the router’s IP
address should from now on resolve to Mallory’s MAC
address

Because ARP is an authentication-less protocol that as-
sumes all participants of a LAN can be trusted, the
router and Alice alter the entries in their local ARP table
immediately and from now on forward all packets to Mal-
lory. If Mallory’s operating system is configured to route
packages, Alice and the router can still communicate, but
Mallory can read all messages.
Now Mallory has a variety of options to take control
over Alice’s computer. Mallory decides to inject a piece
of JavaScript into each HTML page that the router sends
to Alice. This piece of code will imitate a warning message
of Alice’s web browser which tells her that she has an out-
dated plugin installed that she should update for security
purposes. For convenience, Mallory will provide a link to
an installer for the supposed update, which will actually
be the malware that adds Alice’s computer to Mallory’s
botnet.

B. Prerequisites

For ARP spoofing to function, a number of conditions
must be fulfilled:

• Alice and Mallory are on the same network, i.e. con-
nected to the same router, switch or other networking
device, because ARP packets are only routed within
the boundaries of a single network



6

• Alice uses a network protocol that is compatible with
ARP, like Ethernet for corded networks or one of the
802.11 standards for wireless networks.

• ARP is actually used by the network to resolve ad-
dresses. This is not the case when static routing tables
are used (not unusual in enterprise networks) or the
Extensible Authentication Protocol (EAP) is in use
(as by many universities in Europe). In public WiFi
networks however, ARP is still the dominant technol-
ogy, because it allows participants to connect without
any previous network configuration (as opposed to the
mentioned alternatives).

• The router allows direct communication between par-
ticipants. This cannot be prevented in open (pass-
wordless) WiFi networks due to the nature of the
shared medium (air), but on corded networks or
encrypted WiFi networks, the router can suppress
messages between network participants.

The boundaries to successfully launch an ARP spoofing
attack are surprisingly low: Connecting to the same public
WiFi hotspot is trivial and all of them rely on ARP
(or it’s IPv6 equivalent NDP). Only if the network uses
encryption and is configured to suppress communication
between participants, poisoning the victim’s ARP table
will fail.

C. Execution

This section will give a short overview on how to execute
the ARP spoofing and JavaScript injection attack. All
sources as well as more detailed instructions can be found
in the folder /arp-spoofing in the source code repository.
We will perform the attack from a machine with a Debian-
based Linux distribution, but it should be well portable
to other unixoide operating systems. On the victim’s
side, we do not require a specific operating system. The
attack works on any device, including smartphones, game
consoles, printers and your fridge (if it’s connected to your
home network).
There is a variety of free software tools available to
automate the process of ARP cache poisoning. We will
use ettercap, a particularly useful tool which can do much
more than ARP spoofing.
For this example, our network consists of these devices:
Router: 192.168.1.1
Alice: 192.168.1.20

Mallory: 192.168.1.42

With the following commands we will install ettercap,
enable IP forwarding and poison the ARP cache of the
router and Alice.
apt-get install ettercap-text-only
sysctl -w net.ipv4.ip_forward=1
ettercap -T -i wlan0 -M arp:remote \

/192.168.1.1// /192.168.1.2//

To see if the attack worked, we can have a look at the
ARP table on Alice’s computer:

alice@home:~$ arp -a
malry (192.168.1.42) at 00:24:d7:xx:xx:xx [ether] on wlan0
router (192.168.1.1) at 00:24:d7:xx:xx:xx [ether] on wlan0

If the attack worked, both Mallory and the router appear
to have the same MAC address. If Alice causes network
traffic, Mallory can see the data stream in the terminal
where ettercap is running.
To manipulate the packets that are being redirected to
Alice, we will use mitmproxy, "an interactive console pro-
gram that allows traffic flows to be intercepted, inspected,
modified and replayed". [11]

iptables -t nat -A PREROUTING -i wlan0 -p tcp \
--dport 80 -j REDIRECT --to-port 8080

mitmproxy -T --host

mitmproxy runs on port 8080, which is why we set up an
iptables rule that redirects our intercepted TCP traffic to
this port. Then we launch mitmproxy in interactive mode.
Now we can create, drop and manipulate network packets
interactively.

Figure 3. HTTP traffic intercepted in mitmproxy

Live-editing TCP streams is fun and a decent hacker skill
to have, but it can be rather tedious at times. That’s why
the authors of mitmproxy also built mitmdump, which is
basically mitmproxy with a Python API. It allows us to
filter and modify packages programmatically. With a few
lines of Python code, we can inject our fake JavaScript
message into every HTML site that we intercept.

mitmdump -T -s "inject_js.py"

This command will launch mitmdump and execute the
python script in the file inject_js.py.
The script alters the body of each HTML file that is sent
over HTTP in a way that our malicious warning message
is displayed (see figure 2). As soon as the unsuspecting
victim downloads and executes the assumed update, the
system is infected.



7

Figure 2. Outdated Adobe Flash plugin: original (top) and fake (bottom) message in Mozilla Firefox

D. Assessment

ARP spoofing has been known to be a problem for decades,
and unsurprisingly, on the technical level it has been
solved decades ago. So why is this kind of attack not only
possible, but even viable today?
The authentication issue can be solved by any higher level
protocol that we use. ARP spoofing would still be possible
and the attacker would be able to interrupt the connection,
but he would not be able to manipulate or generate valid
messages if we use proper cryptographic signatures and
he would not be able to read the contents of our messages
if we use strong encryption. If we would consistently use
HTTPS, DNSSec and IMAPS instead of HTTP, DNS and
IMAP, this kind of attack would be annoying, but not a
serious thread.
The next issue is that ARP is being used in environments
that it was not designed for. In public networks where
participants cannot be trusted, ARP is the wrong solution
to the problem of address resolution. EAP used to be a
pain to set up and maintain, but these days, even home
routers can handle RADIUS and similar protocols which
manage authentication and encryption on a per-user basis.
If everything else fails, a simple hack would be to use
WPA2 and to configure the router to disallow any commu-
nication between participants. Though this doesn’t solve
the underlying issues, at least it prevents this attack and
is very easy to configure, even on home routers.
In the end, this attack is the result of ignorance on all
sides: Many content providers still don’t serve the secure
alternatives to network protocols such as HTTP, IMAP
and DNS. Many operators of public WiFi networks still
rely on ARP instead of proper authentication protocols.
And the vast majority of users is completely unaware of
these issues.

V. Conclusion

In this work we have presented a minimalist command
and control infrastructure that is well suited for demon-
stration purposes, but due to intentional limitations not
as actual malware. We have shown how easy it is to infect

and control a system without the need for any privilege
escalation.
Next, we have demonstrated two attacks with the goal
to bring the target system under the control of our C&C
server.
BadUSB is a firmware hack that allows the attacker to
modify critical system resources by emulating the func-
tionality of a different type of USB device. Taking control
of a system becomes as easy as attaching a customary
USB thumb drive with a modified firmware to the target
device. We have shown that there is no simple defense
against this attack: parts of the issue have their roots in
the USB standard, others in the ways that manufacturers
distribute and upgrade the firmware of their devices.
ARP Spoofing can be used to launch a man-in-the-middle
attack in public WLANs. This is possible because ARP is a
protocol that uses no authentication and therefore was not
designed to be used in untrusted environments. As long as
no cryptographically secure protocols are being used on a
higher level, the attacker can intercept and manipulate all
packages that are sent over the network. Mitigating this
attack would be easy, if users and providers would rely on
contemporary network protocols and cryptography.
Both attacks are independent of any specific operating
system exploits and can basically target any system that
has a USB port or that is connected to a publicly accessible
network. These attacks are possible due to flaws in stan-
dards and protocols, the lack of any security considerations
when it comes to critical software updates and the insecure
configuration of security-relevant devices on a large scale.
All of these issues were solved decades ago in theory
and well-proven solutions are widely available in practice
today, but for various reasons – none of which are of
technical nature – infrastructure that is flawed by design
is still widely deployed.
To finally approach these problems, a lot more awareness
is needed, both from the providers and the users. We hope
that with our work we can show users how to protect
themselves and encourage them to talk to their friends,
colleagues and network operators about these issues.



8

References
[1] Flask. http://flask.pocoo.org/ (accessed 2016-04-27)
[2] PyInstaller. http://www.pyinstaller.org/ (accessed 2016-04-

27)
[3] Nohl, K., & Lell, J. (2014). BadUSB – On accessories that

turn evil. Black Hat USA.
[4] USB Class Codes, http://www.usb.org/developers/defined_class

(accessed 2016-05-14)
[5] Psychson. https://github.com/adamcaudill/Psychson

(accessed 2016-03-22)
[6] Psychson: Known supported devices.

https://github.com/adamcaudill/Psychson/wiki/Known-
Supported-Devices (accessed 2016-03-22)

[7] Intel MCS-51. http://www.intel.com/design/embcontrol/ (ac-
cessed 2016-05-15)

[8] USB Rubber Ducky. http://usbrubberducky.com/ (accessed
2016-03-22)

[9] DuckyScript. http://usbrubberducky.com/#!duckyscript.md
(accessed 2016-03-22)

[10] Wired Magazine: Why the Security of USB is Fundamen-
tally Broken. https://www.wired.com/2014/07/usb-security/
(accessed 2016-05-15)

[11] mitmproxy. https://mitmproxy.org/ (accessed 2016-04-02)

http://flask.pocoo.org/
http://www.pyinstaller.org/
http://www.usb.org/developers/defined_class
https://github.com/adamcaudill/Psychson
https://github.com/adamcaudill/Psychson/wiki/Known-Supported-Devices
https://github.com/adamcaudill/Psychson/wiki/Known-Supported-Devices
http://www.intel.com/design/embcontrol/
http://usbrubberducky.com/
http://usbrubberducky.com/#!duckyscript.md
https://www.wired.com/2014/07/usb-security/
https://mitmproxy.org/

	I Introduction
	II C&C Infrastructure
	II-A Requirements
	II-B Implementation

	III BadUSB
	III-A Attack Vector
	III-B Prerequisites
	III-C Implementation
	DuckyScript
	Psychson
	Attacking multiple operating systems
	Limitations

	III-D Assessment

	IV ARP Spoofing
	IV-A Attack Vector
	IV-B Prerequisites
	IV-C Execution
	IV-D Assessment

	V Conclusion
	References

